Preface

In this tutorial we will introduce the concepts of Machine Vision and how we can implement such applications in LabVIEW.

For more information and additional resources:

http://home.hit.no/~hansha/?tutorial=vision

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/.

You need the following software:

- LabVIEW
- NI Vision Acquisition Software
- NI Vision Development Module
- (NI Vision Builder for Automated Inspection)

These software packages will be explained in detailed later.

In the examples we will use a GigE Vision camera (Basler scA640-70gc), i.e. the camera is connected to the computer using a standard Ethernet cable.
Table of Contents

Preface ...3

Table of Contents ..iv

1 Introduction to LabVIEW ..1
 1.1 Dataflow Programming ..1
 1.2 Graphical Programming ..1

2 Introduction to Machine Vision ...3
 2.1 Introduction ...3
 2.2 Image Processing and Analysis ..3
 2.2.1 Thresholding ...3
 2.2.2 Pattern recognition and matching ..3
 2.2.3 Texture recognition ..3
 2.2.4 Barcode reading ..3
 2.2.5 OCR ...4
 2.2.6 Gauging ...4
 2.2.7 Position ...5
 2.2.8 Edge Detection ..5
 2.2.9 Color analysis ..5
 2.2.10 Filtering ...5
 2.2.11 Counting and Classification ..5

3 Vision Cameras ..6
 3.1 GigE (Ethernet) Cameras ..6

4 Introduction to Vision Systems in LabVIEW ..7
 4.1 Software ...7
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1</td>
<td>NI Vision Acquisition Software</td>
<td>7</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Vision Development Module</td>
<td>8</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Vision Builder for Automated Inspections</td>
<td>9</td>
</tr>
<tr>
<td>4.2</td>
<td>Configuration</td>
<td>9</td>
</tr>
<tr>
<td>4.3</td>
<td>Building Vision Systems in LabVIEW</td>
<td>11</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Using the Vision Acquisition Express VI</td>
<td>12</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Using the IMAQdx VIs</td>
<td>13</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Open Images from a File</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Vision functionality in LabVIEW</td>
<td>17</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Thresholding</td>
<td>18</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Pattern recognition and matching</td>
<td>18</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Texture recognition</td>
<td>19</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Barcode reading</td>
<td>19</td>
</tr>
<tr>
<td>5.1.5</td>
<td>OCR</td>
<td>19</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Gauging</td>
<td>20</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Position</td>
<td>20</td>
</tr>
<tr>
<td>5.1.8</td>
<td>Edge Detection</td>
<td>20</td>
</tr>
<tr>
<td>5.1.9</td>
<td>Color analysis</td>
<td>21</td>
</tr>
<tr>
<td>5.1.10</td>
<td>Filtering</td>
<td>21</td>
</tr>
<tr>
<td>5.1.11</td>
<td>Counting and Classification</td>
<td>21</td>
</tr>
</tbody>
</table>
1 Introduction to LabVIEW

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a platform and development environment for a visual programming language from National Instruments. The graphical language is named "G". Originally released for the Apple Macintosh in 1986, LabVIEW is commonly used for data acquisition, instrument control, and industrial automation on a variety of platforms including Microsoft Windows, various flavors of Linux, and Mac OS X. Visit National Instruments at www.ni.com.

The code files have the extension ".vi", which is an abbreviation for "Virtual Instrument". LabVIEW offers lots of additional Add-Ons and Toolkits.

1.1 Dataflow Programming

The programming language used in LabVIEW, also referred to as G, is a dataflow programming language. Execution is determined by the structure of a graphical block diagram (the LV-source code) on which the programmer connects different function-nodes by drawing wires. These wires propagate variables and any node can execute as soon as all its input data become available. Since this might be the case for multiple nodes simultaneously, G is inherently capable of parallel execution. Multi-processing and multi-threading hardware is automatically exploited by the built-in scheduler, which multiplexes multiple OS threads over the nodes ready for execution.

1.2 Graphical Programming

LabVIEW ties the creation of user interfaces (called front panels) into the development cycle. LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI has three components: a block diagram, a front panel, and a connector panel. The last is used to represent the VI in the block diagrams of other, calling VIs. Controls and indicators on the front panel allow an operator to input data into or extract data from a running virtual instrument. However, the front panel can also serve as a programmatic interface. Thus a virtual instrument can either be run as a program, with the front panel serving as a user interface, or, when dropped as a node onto the block diagram, the front panel defines the inputs and outputs for the given node through the connector pane. This implies each VI can be easily tested before being embedded as a subroutine into a larger program.

The graphical approach also allows non-programmers to build programs simply by dragging and dropping virtual representations of lab equipment with which they are already familiar. The LabVIEW
programming environment, with the included examples and the documentation, makes it simple to create small applications. This is a benefit on one side, but there is also a certain danger of underestimating the expertise needed for good quality “G” programming. For complex algorithms or large-scale code, it is important that the programmer possess an extensive knowledge of the special LabVIEW syntax and the topology of its memory management. The most advanced LabVIEW development systems offer the possibility of building stand-alone applications. Furthermore, it is possible to create distributed applications, which communicate by a client/server scheme, and are therefore easier to implement due to the inherently parallel nature of G-code.
2 Introduction to Machine Vision

2.1 Introduction

Wikipedia:

Machine vision (MV) is the process of applying a range of technologies to provide imaging-based automatic inspection, process control and robot guidance in industrial applications.

A generally accepted definition of machine vision is “the analysis of images to extract data for controlling a process or activity”.

The primary uses for machine vision are automatic inspection and robot guidance. The main categories into which MV applications fall are quality assurance, sorting, material handling, robot guidance, and calibration, etc.

2.2 Image Processing and Analysis

After the image is taken we need to do some image processing and analysis. Below we list some of the most used functions:

2.2.1 Thresholding

Converting a grayscale image to black and white.

2.2.2 Pattern recognition and matching

2.2.3 Texture recognition

2.2.4 Barcode reading

We have different kind of barcodes and we see barcodes everywhere today. We have 1D barcodes, 2D barcodes, QR codes, etc. Today barcodes have a lot of applications.
A barcode is an optical machine-readable representation of data, which shows data about the object by varying the widths and spacing’s of parallel lines, and may be referred to as linear or 1 dimensional (1D) barcode. Below we see a standard barcode:

Later they evolved into rectangles, dots, hexagons and other geometric patterns in 2 dimensions (2D). Although 2D systems use a variety of symbols, they are generally referred to as barcodes as well. Below we see a so-called QR code:

The QR code is one of the most popular types of two-dimensional barcodes.

Barcodes originally were scanned by special optical scanners called barcode readers; later, scanners and interpretive software became available on devices including desktop printers and smartphones.

2.2.5 OCR

OCR or Optical Character Recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files.

Typically multifunction printers with scanner functionality include some software for OCR.

2.2.6 Gauging

Measuring object dimensions.
2.2.7 Position

2.2.8 Edge Detection

2.2.9 Color analysis

2.2.10 Filtering

2.2.11 Counting and Classification

Classification is a tool for identifying an unknown object by comparing its significant features to a set of features that represent known samples.

Typically e.g., we could have some bolts and screws we want to classify or count on an assembly line or something.

In these situations we typically have a template image of each of the objects we want to classify or count that is used for comparison.
3 Vision Cameras

There exist different cameras used in machine vision. We can divide into 3 categories based on their connections to the PC:

- USB cameras
- IEEE 1394 (FireWire) cameras
- GigE (Ethernet) cameras

In this tutorial we will use a Basler scA640-70gc GigE camera.

3.1 GigE (Ethernet) Cameras

Below we see a standard GigE Ethernet camera:

The camera is connected to the computer using a standard Ethernet cable.
4 Introduction to Vision Systems in LabVIEW

4.1 Software

National Instruments offers different kind Vision software depending on your application and your needs:

- NI Vision Acquisition Software
- NI Vision Development Module
- NI Vision Builder for Automated Inspections

We will discuss the different packages more in detail below.

If you install all these 3 packages, you will end up with the following palette in LabVIEW:

![Vision and Motion Palette](image)

4.1.1 NI Vision Acquisition Software

The **NI Vision Acquisition software** is the basic software you need if you want to create Vision applications for LabVIEW or the .NET platform. The NI Vision Acquisition software includes the necessary drivers, such as NI-IMAQ and NI-IMAQdx.

The **NI-IMAQdx** driver software gives you the ability to acquire images with IEEE 1394 (FireWire), GigE Vision (Ethernet), and USB cameras.
4.1.2 Vision Development Module

For more advanced machine vision and image processing you will need the **Vision Development Module**. The Vision Development Module contains hundreds of image processing and machine vision functions, both for LabVIEW and the .NET platform.

This package includes built-in functions for:

- Pattern matching
- Texture recognition
- Counting and Classification
- OCR (Optical Character Recognition)
- Bar Code readers
- Image Filters
- etc.

Below we see the “**Image Processing**” palette in LabVIEW:

Below we see the “**Machine Vision**” palette in LabVIEW:
We will learn more about these later.

4.1.3 Vision Builder for Automated Inspections

NI Vision Builder for Automated Inspection (AI) is an external and independent application for building and machine vision applications without the need for programming.

4.2 Configuration

When the necessary software is installed, we use the **Measurement & Automation Explorer (MAX)** to get started.

When we plug in the camera using an Ethernet cable into the computer, the camera should appear in the list.

You can connect a camera to a local Windows machine or a LabVIEW Real-Time target machine. We will focus on connection the camera to a local machine.

Complete the following steps to connect a GigE camera or an IEEE 1394 camera to a local Windows machine:

1. Connect the camera to the Ethernet port on the local machine.
2. In the MAX configuration tree, expand Devices and Interfaces to obtain a list of installed devices.
3. Expand NI-IMAQdx Devices to obtain a list of available cameras.
When the camera is successfully connected, you can configure and test the camera in MAX.

Click the camera name to select the appropriate camera (in this tutorial we use a “Basler scA640-70gc” camera). Click **Snap** to acquire a single image or click **Grab** to continuously acquire an image.

If everything works, you should be able to see an image inside camera window:

Though you might get an error like this:
Which means you should reduce the **Package Size** in the configuration and/or configure the **Firewall** on your computer.

When it comes to the Firewall, the easiest thing to do is to turn the whole Firewall off in order to make sure the camera works.

But it is not recommended to turn off the Firewall entirely and let the computer be unprotected for a long time.

If still not working, you should also try to turn off the **Anti Virus** software temporarily.

4.3 Building Vision Systems in LabVIEW
We start by demonstrating how to acquire images from the camera using LabVIEW code.

4.3.1 Using the Vision Acquisition Express VI

The simplest way to acquire images from LabVIEW is to use the Vision Acquisition Express VI.

We find the “Vision Acquisition Express VI” in the Vision Express palette in LabVIEW:

![Vision Acquisition Express VI in LabVIEW](image)

When we drag the “Vision Acquisition Express VI” to the block diagram, a wizard will appear:

![Vision Acquisition wizard in LabVIEW](image)

The finished LabVIEW program will simply look like this:
The image will be acquired on the Front Panel in the “Image Out”:

4.3.2 Using the IMAQdx VIs

Below we see the NI-IMAQdx palette in LabVIEW:
Below we see a simple example where we use the IMAQdx VIs to create an application where we acquire a single image from the camera.
On the Front Panel we can use different containers for showing images on the screen:

![Image Containers](image.png)

4.3.3 Open Images from a File

When working with Vision systems it is important to be able to save the images to a file or open an existing image from a file.
Below we see an example of how we can open and load an image from a file into LabVIEW:

In the example above it will pop-up an open File dialog box, but we can also specify the file path directly in the LabVIEW code.

On the Front panel we will see the image inside an image container:
5 Vision functionality in LabVIEW

Below we see the Vision and Motion palette in LabVIEW:

Below we see the “Image Processing” (Vision and Motion → Image Processing) palette in LabVIEW:

Below we see the “Machine Vision” (Vision and Motion → Machine Vision) palette in LabVIEW:
5.1.1 Thresholding

Vision and Motion → Image Processing → Processing

5.1.2 Pattern recognition and matching

Vision and Motion → Machine Vision → Find Patterns
5.1.3 Texture recognition

Vision and Motion → Image Processing → Texture

5.1.4 Barcode reading

Vision and Motion → Machine Vision → Instrument Readers

5.1.5 OCR
Vision and Motion → Machine Vision → OCR

5.1.6 Gauging

Vision and Motion → Machine Vision → Measure Distances

5.1.7 Position

5.1.8 Edge Detection

Vision and Motion → Machine Vision → Locate Edges
5.1.9 Color analysis

5.1.10 Filtering

Vision and Motion → Image Processing → Filters

5.1.11 Counting and Classification

Vision and Motion → Image Processing → Texture → Classification

Or

Vision and Motion → Machine Vision → Classification
Vision functionality in LabVIEW

Vision and Motion → Machine Vision → Count and Measure Objects
Telemark University College
Faculty of Technology
Kjølnes Ring 56
N-3918 Porsgrunn, Norway
www.hit.no

Hans-Petter Halvorsen, M.Sc.
Telemark University College
Department of Electrical Engineering, Information Technology and Cybernetics

Phone: +47 3557 5158
E-mail: hans.p.halvorsen@hit.no
Blog: http://home.hit.no/~hansha/
Room: B-237a